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1 Abstract

In this article, a study comparing three time series data

analysis techniques is undertaken. These techniques

include a traditional spectral approach, wavelet trans-

forms, and autoregressive with exogenous input. The

study is motivated by the current popularity of discrete-

time data reduction schemes, such as the Eigensystem

Realization Algorithm and Polyreference, for extract-

ing test-derived modal models from measurement data

in the modal testing community and problems associ-

ated with acquiring the input to them via intermediate

approximations to continuous-time system characteri-

zations. A review of pertinent details for each of the

approaches is given and all are compared through re-

sults of a computational example.

2 Nomenclature

A;B;C;D : Continuous-Time State Matrices

x(t) : State Vector

u(t) : Input (Excitation) Vector

y(t) : Output (Response) Vector

h(t) : Continuous-Time Impulse Response
�A; �B : Discrete-Time State Matrices
�h(i) : Discrete-Time Impulse Response

Ruu(� ) : Input Autocorrelation Function

Ryy(� ) : Output Autocorrelation Function

Ryu(� ) : Input/Output Cross-correlation Function

S(� �)(!) : Power Spectral Density Function

H(!) : Frequency Response Matrix

Y : Output Matrix

U : Input Matrix

[�]DWT : Denotes Discrete Wavelet Transform

Ai; Bi; C0 : ARX Coe�cient Matrices

�kl : Kronecker Delta Symbol

3 Introduction

Structural dynamics test model characterization may

be e�ected in a number of ways depending on the spec-

i�cations for and constraints placed upon a given modal

test [1]. By far the most popular approach culminates

in the derivation of a modal model from sampled time-

domain response measurements obtained for a set of de-

grees of freedom (DOF) on the physical structure under

consideration. Such models are often used subsequently

as vital elements of an overall structural design strategy

for such purposes as establishing a physically-validated

data point for updating analytically derived models.

Because of the discretized nature of the response mea-

surements used, modal models are often derived from

data in a discrete, sampled-data form. Many of the

more recent approaches for reducing measurement data

to modal models, such as Polyreference [2] and ERA [3],

are based on discrete time domain input/output charac-

terizations and require an estimate of the discrete-time

impulse response functions for each input/output pair-

ing. Often called Markov parameters in the literature,

the points that make up the discrete impulse response

represent fundamental properties of the sampled{data

model which is itself derived from the continuous-time

equations of motion for the structure given a sampling

rate and assumptions regarding the variation of the in-

put between samples. The present study focuses on

methods for estimating the desired discrete impulse re-

sponse from the general input and output time series

measurements available in modal testing.

The current state-of-the-art for obtaining the discrete

impulse response functions from the set of response

measurements comprises what is known collectively as

spectral methods. Spectral methods involve comput-

ing multiple-input/multiple-output (MIMO) frequency

response functions (FRF) from discrete Fourier trans-

forms of the input and output time signals. Their

use became widely popular with the advent of the

Fast Fourier transform (FFT) algorithm. Although

the FFT facilitated modal testing through its compu-

tational speed and the ease with which the algorithm

can be implemented in the data acquisition hardware,



there are a number of additional advantages that make

spectral methods popular. Among these are the ability

to perform what is, in essence, a preliminary data re-

duction by averaging the FFT'd data in the frequency

domain|although the actual averaging is most often

performed on the auto and cross spectral density func-

tion estimators. Storing the running frequency domain

averages, as opposed to a collection of time history data,

results in a signi�cant memory savings. And, while

it's more natural to think of spectral approaches in the

context of random data, the method lends itself quite

well to the deterministic framework where the resulting

FRF's can be interpreted as least squares, equivalent

linear models �t to the data.

Even with all the advantages inherent to spectral meth-

ods, there are relevant drawbacks to consider. The sig-

nals undergo the well-known corruptive in
uences of

leakage and aliasing; and, while mitigation procedures

for these phenomena are also well-known, the associ-

ated side e�ects are often nontrivial. A more funda-

mental issue pertains to the con
icting requirements

that the signals be limited both in time duration and

frequency bandwidth. Finally, given an ultimate goal

of deriving accurate estimate of the discrete impulse

functions, it is important to consider their relationship

to the discrete FRFs through the use of the discrete

Fourier transform, and the relationship between the

continuous and discrete FRF's. For example, in lightly

damped systems, there can be signi�cant errors intro-

duced in the computation of the discrete impulse re-

sponse due to the frequency resolution of the FRF. In

addition, the discrete and continuous FRFs can di�er

remarkably in both magnitude and phase, particularly

away from the resonance peaks, because of the implicit

ambiguity in the variation of the signals between sam-

ples. Thus, severe limitations are posed by use of spec-

tral methods for discrete impulse response estimation,

even when the continuous FRFs are estimated to the

highest levels of accuracy.

It is this latter issue that motivates the current study

in which we explore two additional data reduction ap-

proaches, Autoregressive with eXogenous input (ARX)

and Wavelet Transforms, for estimating system Markov

parameters which represents the data necessary for sub-

sequent input to time domain-based modal model algo-

rithms. Both of these approaches are particularly rele-

vant to the aforementioned issues because they seek to

bypass the corrupting e�ects of the discrete forward and

inverse Fourier transforms by estimating the Markov

parameters in the time domain using a discrete time

input/output system characterization consistent with

the model form used in the subsequent modal model

derivation. The ARX method has been studied and

used extensively for modal model derivation. In the

present context, it is used in a systematic way to deter-

mine an over-parameterized input/output model, which

in turn is used to compute the impulse responses. The

wavelet transform-based technique, on the other hand,

attempts to estimate the impulse responses through a

discrete deconvolution of the data represented in terms

of wavelet transform coe�cients.

4 Overview of The Methods

In this section, an overview of the salient features of

each of the techniques is presented. The reader is di-

rected to the cited references for more detailed discus-

sions associated with any of the approaches.

All methods for data �tting begin by inferring an un-

derlying model form and the data are then collected

and �t to parameters of that model. For the methods

currently under consideration, a linear relationship is

presumed, viz.,

_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

The output y and input u are then related through a

convolution integral:

y(tn) =

Z tn

�1

h(tn � � )u(� )d�

=

Z 1

0

h(�)u(tn � �)d�

(2)

where h(�) is the temporal impulse response function

of (1).

For a discrete-time system of the corresponding state

space form

x(i + 1) = �Ax(i) + �Bu(i)

y(i) = Cx(i) +Du(i)
(3)

the convolution integral is transformed to a summation

involving samples of the input, u(i) and the discrete-

time impulse response function, �h(i)

y(n) =

nX
k=0

�h(n� k)u(k) (4)

The Markov parameters, �h(i), are related analytically

to their continuous-time counterpart, h(�), via integra-

tion over the time step, �t, of the discrete-time system

along with some assumptions regarding the variation of

the input between the samples.

There is an important theoretical issue underlying dis-

crete impulse response estimation for continuous sys-

tems; that is, the di�erences between the continuous

and discrete frequency response and the corresponding

di�erences in the impulse response functions. Figure 1



illustrates these di�erences for a simple four degree-of-

freedom system with force input and acceleration out-

put. The continuous FRF results from sampling the

transfer function

H(s) =D+C(sI �A)�1B (5)

of the continuous system (1) at s = j! for a discrete set

of N frequencies !k. The discrete FRF at the same fre-

quencies !k is generated by computing the impulse re-

sponse of the system discretized with a zero-order hold,

given by

�h(0) =D

�h(i) = C �Ai�1 �B i = 1; : : :N � 1
(6)

where

�A = eA�t �B =

Z �t

0

eA(�t��)Bd� (7)

and then taking the discrete Fourier transform of �h

to obtain the discrete FRF, �H(j!). The di�erences
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Figure 1: Comparison of Continuous and Discrete Fre-

quency Response Functions

between the two FRFs, both of which are \exact" in

the sense that they are computed directly from the

equations of motion, are due both to sampling and to

windowing e�ects. The sampling causes aliasing of re-

sponses above the Nyquist frequency (half of the sam-

pling frequency), which in this case is due to the high

frequency asymptote of the acceleration response cou-

pled with the high frequency input of the zero-order

hold. This a�ects primarily the lower magnitude re-

sponses, such as those near the transmission zeros of

the continuous FRF.

Although at �rst it might seem that the discrete FRF

is inferior to the continuous FRF in terms of charac-

terizing the dynamics of the system, given that it is

distorted by aliasing and windowing, it is actually this

FRF which proves the more desirable alternative. This

is the case since, for subsequent modal model identi�-

cation using approaches such as ERA or Polyreference,

the estimated FRF must be transformed to the time do-

main using an inverse discrete Fourier transform. For

the discrete FRF, this �nal step can be viewed as revers-

ing the distortions caused by aliasing and windowing in

such a way that the resultant impulse response is iden-

tical to that used to create the discrete FRF, and is

the exact discrete impulse response of the system. The

inverse discrete Fourier transform of the exact contin-

uous FRF is also prone to a reversal of aliasing and

windowing e�ects, but in this case the distortion is not

balanced by the forward transform resulting in a dis-

crete impulse response which is not equivalent to the

exact Markov parameters of the discretized system.

In summary, before proceeding to a detailed discussion

of the estimation algorithms, we wish to point out that

the system can be characterized by either continuous

or discrete response functions, and that those functions

are not merely samples or interpolations of each other.

They in fact can be quite di�erent and re
ect the limi-

tations of discrete transforms and models as applied to

continuous systems.

4.1 Spectral Methods

Consider equation (2) and assume that the input term

is a random vector process, then multiplying both sides

of the equation by u(t� � )
T
and taking mathemati-

cal expectation of both sides of the resulting equation

yields

Ryu(� ) =

Z
1

�1

H(�)Ruu(� � �)d� (8)

which, upon taking the Fourier transform, results in the

following relationship:

Syu(!) = H(!)Suu(!) (9)

where R(� �)(� ) are the auto and cross correlation func-

tions and S(� �)(!) are the auto and cross spectral den-

sity functions.

Alternatively, one could replace u(t� � )
T

with

y(t� � )
T
and follow a similar path to

Syy(!) = H(!)Suy(!) (10)



Thus the frequency response, H, can be estimated from

either of equations (9) or (10). and the respective quan-

tities are commonly referred to as H1 and H2. Each

estimate can give rise to di�erent results and the ap-

plicability of each in the face of various noise models is

generally addressed in the literature on modal testing

(e.g. [1]).

Given the above theory, one is left with the task of es-

timating these continuous spectra using �nite, sampled

time history data; and, if one considers the derivation

of the discrete system Markov parameters as the ulti-

mate goal, this is where the complicating factors begin

to surface. Among them are:

� FFTs of �nite length sampled time data records

impose an assumed periodicity in both the time

and frequency domain representations. One con-

sequence of this is a phenomenon known as leak-

age, which results when frequency components of

the signal are not integer multiples of the discrete

frequency resolution, �f .

� All continuous structures contain, at a minimum,

a countably in�nite eigenvalue spectrum, which

translates into the existence of modes above the

cuto� frequency for the sampled data. Further-

more, when acceleration sensors are utilized, the

transfer functions of the system modes, including

those below the cuto� frequency, possess a high

frequency, nonzero, asymptote. Those out-of-band

response components are aliased down into the fre-

quency band of interest unless some care is made in

designing the excitation and in acquiring the data.

4.2 Wavelet Transforms

Wavelet transforms provide a new methodology for esti-

mating the Markov parameters of MIMO dynamic sys-

tems [4]. As with the spectral approach, the method

involves transforming the time domain convolution in-

tegral, although with wavelets the result is a new con-

volution problem written in terms of the wavelet trans-

form coe�cients. Hence, the wavelet-based approach is

more closely related to a classical time domain deconvo-

lution, whereby the Markov parameters are estimated

through a numerical inversion of the discrete-time con-

volution equations. Both the wavelet and time do-

main approaches yield similar solutions, but additional

improvements are possible when done in the wavelet

domain due to the unique �ltering properties of the

wavelet transform.

The discretized convolution given in equation (4) can

be expressed in matrix form as:

Y = hU (11)

where the output matrix Y, the time-domain impulse

response matrix h and the input matrix U are given,

respectively, by

Y[m�s] =
�
y(0) y(1) : : : y(s � 1)

	
(12a)

h[m�r(p+1)] =
�
h(0) h(1) : : : h(p)

	
(12b)

U[r(p+1)�s] =2
64
u(0) � � � u(p) � � � u(s� 1)

0
. . .

...
. . .

...

0 0 u(0) � � � u(s � p� 1)

3
75 (12c)

The subscripts on the left-hand sides of the above equa-

tions represent the matrix sizes for which m, s, r and p

are the number of measurement vectors, the number of

measurement samples, the number of input signals, and

the number of discrete impulse response parameters, re-

spectively. The parameter p depends of the decay rate

of the impulse response; for structures with light damp-

ing p = s� 1 since it cannot be assumed that h(p) = 0

for p < s � 1.

Equation (4) can thus be represented in the wavelet do-

main by taking the discrete wavelet transforms (DWT)

of both h and u:

hDWT (�) = hDWT
0 +

X
j

X
k

hDWT
(2j+k) (2

j� � k) (13)

For the DWT characterization of u(tn � �), �rst u(�)

is reversed in time to obtain u(��), then it is shifted

toward the positive time axis by the amount tn and

fu(�) = 0; for � > tng. With this convention, the

DWT series of u(tn � �) is expressed as:

uDWT (tn � �) = uDWT
0 +

X
j

X
k

uDWT
(2j+k) (2

j� � k)

(14)

Substituting the DWT series of hDWT (�) and

uDWT (tn � �) into the above convolution integral

for y(tn), while utilizing wavelet orthogonality condi-

tions [5], one obtains the following formula [6]:

y(tn) = hDWTuDWT (tn) (15a)

hDWT = h0 h1 h2 h3 h4 h5 : : : (15b)

uDWTT = u0 u1 u2=2 u3=2 : : : (15c)

where hDWT is the wavelet transform of h(�) and

uDWT (tn) is the wavelet transform of fu(tn��); 0 �

� � tng.

For the entire response data, one can arrange the input

and output relation in the form

Y = hDWT UDWT

[m�s] [m�r`] [r`�s]
(16)



where

Y = fy(0); y(1); : : :g (17a)

UDWT = fuDWT (0); uDWT (1); : : :g (17b)

and m, s, r and ` are the number of measurement vec-

tors, the number of measurement samples, the number

of input signals, and the depth of the wavelet transform

levels, respectively. Note, this is in the same form as

the time domain problem (2), except that the h and U

matrices are transformed to the wavelet domain.

Solving for hDWT from the above relation, one obtains

hDWT = Y �UDWTT � (UDWTUDWT T )
�1

(18)

and �nally the inverse DWT of hDWT yields the desired

temporal impulse response data:

fh(t); t = t0; t1; : : : ; t(s�1)g = IDWTfhDWT g:

(19)

For systems with multiple inputs, it is necessary to use

multiple test data batches to obtain a well-conditioned

solution. In this case, the quantities UDWTUDWTT

and Y �UDWT T are averaged over an ensemble of test

data. This averaging approach is also helpful in han-

dling measurement noise.

4.3 Exogenous Autoregressive (ARX) Model-

ing

Contrary to traditional spectral analysis and the

wavelet transform technique described above, the ex-

ogenous autoregressive (ARX) modeling approach is

based on a di�erent parametric representation of the

system's input/output relationship. Speci�cally, it is

assumed that the input sequence, u(n), n=0,1,2,... and

the corresponding output, y(n), satisfy the recurrence

equation speci�ed by

y(n)+A1y(n � 1) + :::+ Apy(n� p) =

B0u(n) + :::+ Bqu(n� q) + C0w(n) (20)

where the coe�cients Ai, i=1, 2, ..., p, Bj , j=0,1, 2,

..., q, and C0 are constant matrices and w(n) denotes

a uncorrelated Gaussian white noise vector.

ARX models (see [7] and references therein for addi-

tional details) can be shown to be a special case of

a more general class, known as exogenous autoregres-

sive moving average (ARMAX) models, which have

been found to represent the input/output relationship

of multi-degree-of-freedom dynamic systems (see, for

example, [8, 9, 10]) under very broad conditions.

Given samples of the input u(n) and output y(n) time

series, determination of the parameters, Ai, Bj , and C0,

proceeds following standard arguments [7]: The coe�-

cients are evaluated through maximization of a likeli-

hood function based on the observed response time se-

ries or, equivalently, the minimization of an error met-

ric, "L, de�ned by

"L =
X
n

2
4 pX
i=0

Ai y(n� i) �

qX
j=0

Bj u(n� j)

3
5
2

(21)

where A0 is constrained to be the identity matrix. Note

that "L is quadratic in the unknown elements of the

matrices Ai, i=1, 2, ..., p, Bj , j=0,1, 2, ..., q so that

these coe�cients can be obtained by solving a linear

system of equations.

Once the ARX model coe�cients have been deter-

mined, the frequency response function of the system

can directly be estimated in the form

H(!) =

"
pX

k=1

Ak e
�ik!�T

#�1 " qX
l=1

Bl e
�il!�T

#
(22)

where �T denotes the sampling time.

Alternatively, the Markov parameters of the system can

recursively be estimated from Eq. (1) with the input

sequence

u(n) =

2
6664

1 0 0

0 1 0 � � �

0 0 1
...

. . .

3
7775 �n0 (23)

where �kl denotes the Kronecker symbol.

5 Example Applications

In this section, we attempt to examine the similari-

ties and di�erences exhibited by the methods via nu-

merically simulated example situations for a four de-

gree system. This system, which is shown graphically

in Figure 2, consists of four masses connected to each

other, and to one rigid reference location, via springs

and viscous damping elements. These discrete DOF are

numbered as shown with excitations applied at DOF 2

and 4. For all of the cases considered we assume a

sample rate of 100Hz, which corresponds to �t = :01

seconds, and show results for a subset of the estimated

data. Speci�cally, frequency response functions for the

response at DOF 1 due to excitation at DOF 2 will be

given.

The simulation of the system was carried out as follows.

In the �rst example, discrete random excitation signals

were generated at 1000Hz to approximate stationary



m1 = m2 = m3 = m4 = 1
k1 = k2 = k3 = k4 = 10,000

1 2 3 4

k1 k2 k3 k4

c1 c2 c3 c4

u1 u2

c1 = 0.64946
c2 = 1.0
c3 = 7.66
c4 = 0.9397

Figure 2: Sketch of Four DOF System

Gaussian white noise. These signals were low-pass �l-

tered at 50Hz and applied to the continuous equations

of motion with a �rst-order hold to approximate the ap-

plication of an analog input signal to the structure. The

inputs and outputs were then computed at intervals of

0:001 seconds. Finally, these \continuous" signals were

contaminated with one percent measurement noise and

then sampled to 100Hz to obtain the �nal digital sig-

nals used for response function estimation. A total of

10240 samples were obtained, corresponding to a 102:4

second duration simulated test.

For averaging purposes, in the case of the FFT-based

spectral estimation and the Wavelet transform method,

the data records were �nally partitioned into an ensem-

ble of 40 records, each containing 256 samples for each

input and output signal. The results for all three meth-

ods are shown in Figure 3. Note that both the wavelet

transform (albeit with slight problems at the extreme

frequency intervals) and the ARX methods adequately

represent the system while, the FFT-based spectral es-

timate yields an unsatisfactory result. This is due to

the fact that the input/output data are not windowed

for any of the techniques employed. For the spectral ap-

proach, this results in corruption due to leakage. It is

well known that windowing techniques, such as the use

of a Hanning window, can mitigate the corrupting ef-

fects of leakage and produce a much smoother response

curve for spectral estimation. The drawback of such

techniques, however, is that they produce a systematic

bias in the estimation, particularly at resonance where

there are sharp transitions in the true value of the re-

sponse function. This can lead in particular to errors

in damping and modal mass estimates when the modal

model is identi�ed.

Case 2 repeats the �rst case with the notable excep-

tions that (1) There is no measurement noise added to

the signals; and (2) Anti-aliasing �lters are used. The

anti-alias �lters were designed as low-pass �lters with a
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Figure 3: Results For Case 1: H12

corner frequency of 35Hz and were applied to the \con-

tinuous" (1000Hz sampled) signals before the �nal sig-

nal sampling at 100Hz. Results for Case 2 are shown

in Figure 4. Most notable is the fact that no data for

the ARX approach are shown in the �gure. Analyzing

the results, we found that the causal Markov sequence

corresponding to the data pre-�ltered with the anti-

aliasing �lter was found to be unstable. This instability

is not entirely unexpected and can probably be traced

to the existence of a frequency domain of nonzero mea-

sure over which the spectrum of the anti-aliased output

vanishes (or nearly so) and, when combined with the

additional constraint that the conditions of the compar-

ison have imposed, results in an extreme model over-

parameterization. Experience with non-exogenous au-

toregressive models has shown that the very 
at zero

created by the anti-aliasing �lter leads to poles that are

densely populated around the unit circle in the z-plane.

Unfortunately, the maximum likelihood estimation of

the ARX model is not necessarily stable, which is con-

trary to the case of non-exogenous AR modeling, and

thus some poles are found which reside outside the unit

circle.

Note in Figure 4 that both the Wavelet transform esti-

mate and the FFT spectral-based estimate both dis-

play a biased trend at points away from the modal

resonances. This is, in fact, due to the anti-alias �l-

ters used on the time-series data before sampling. In
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Figure 4: Results For Case 2: H12

the bandwidth below 35 Hz (which was the corner fre-

quency set for the �lters), the spectral estimation will

tend to converge towards the samples of the continu-

ous FRF which was shown in Figure 1. Above 35 Hz,

neither of the estimates will be reliable because the low

magnitude of both the input and output renders the

estimation indeterminate. Generally speaking, the use

of anti-alias �lters will bias the estimated FRF towards

samples of the continuous FRF within the passband of

the �lters, while leaving the signals un�ltered will lead

to an estimation of the discrete FRF.

6 Concluding Remarks

The subject study was motivated by two key observa-

tions: �rst, current data reduction schemes for extract-

ing modal models from test measurements assume dis-

crete time state-space models underlie the correspond-

ing physical system; and secondly, spectral methods,

while exhibiting many well-known strengths, may be

de�cient in providing input to these procedures in the

appropriate form. This latter point has at least one rel-

evant consequence in that it can lead to di�culties in

assessing the model order for a given system resulting

in an accompanying model that is over-parameterized.

The di�culties with over-parameterization include the

existence of unstable computational poles, which must

be culled, and stable computational poles, which must

then be distinguished from poles associated with sys-

tem modes of vibration|a nontrivial task, at best.

To address these issues, two time series analysis tech-

niques, wavelet transforms and autoregressive with ex-

ogenous input, were selected for consideration based

on their direct relationships to the discrete time sys-

tem. A review of the basics for each approach has

been presented and the performance of each was ex-

amined for two cases of interest. Both methods, under

the constraints imposed by the study, performed well

for the case of un�ltered data. The ARX approach

provided a superb �t, perhaps suggesting that data

windowing need not be employed when using it. The

Wavelet transform performed equally well for both ex-

ample cases, while ARX proved a failure. The source

of this is the subject of ongoing investigation.

One point that has not been discussed is the compu-

tational feasibility of each of the methods. Both su�er

in this important aspect relative to FFT-based spectral

methods. The wavelet transform approach performs far

poorer and additional research on that speci�c aspect is

de�nitely needed. ARX, and for that matter ARMAX

formulations, exhibit computational properties that are

less prohibitive and the modeling experience base is far

more extensive. Some promise may lie in the fact that

incorporating the noise model in the parametric de-

scription will render the averaging requirement moot

thus lessening the data acquisition load.

A �nal note: In many ways a one-to-one compari-

son is made di�cult by the arti�cial constraints that

are placed on each method. For example, the over-

parameterization for the ARX approach would not have

been an issue had the model size not been speci�ed as a

condition of the survey. Additional work will focus on

how best to characterize the results of each approach,

both for the current example set as well as for systems

with out-of-band system modes.
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